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Abstract   
We present a system for detecting malware that uses domain generation algorithms (DGAs) to 

evade blacklisting. We use SQL rules that identify patterns specific to the malware family in the non-
resolving domains queried by infected clients. We have designed a language to describe these rules more 
easily, which can be compiled to SQL. Using this approach we detected ten DGA families in a day’s data 
from a large enterprise. 
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1 Introduction 
In this paper we introduce a system for detecting clients in enterprise networks that are infected with 
malware that uses domain generation algorithms (DGAs) to evade blacklisting. Our system uses SQL rules 
applied to data gathered from Domain Name Service (DNS) servers. We have designed a language that 
compiles to SQL for easily expressing such rules. Our compiler and rules for 16 families are publically 
available (see section 2.6). We have deployed our system in a real context. In an evaluation on a day’s 
worth of data from a large enterprise, our system correctly detected the presence of ten different DGA 
families. This work has not been previously published. 

The controllers of botnets and other malware need to communicate with infected machines, to 
send them instructions and/or to receive data from the machines. Some malware is designed to evade 
blacklisting of domain names, by including an algorithm that generates a batch of domain names, based 
on a seed and sometimes also the date. An infected machine periodically generates a new batch of domain 
names and tries to connect with them all. To communicate with an infected machine, the botnet 
controller registers one of the domain names in the batch, and uses that domain for command and control. 

When an infected machine tries to connect to the domains, it requests their IP addresses from 
the Domain Name Service. This activity leaves traces in the network’s DNS data. The domains in the batch 
that are not used for command and control will be NXDOMAINs, that is, they will not resolve to an IP 
address (unless they have been sinkholed, i.e. registered by a security expert to prevent them from being 
used by the malware controller). 

In the rest of this section we describe previous work in this area. Section 2 presents our system, 
and Section 3 gives results from an evaluation and mentions further steps. 

1.1 Previous work  
There has been previous work done on detecting clients infected by blacklist-evading malware via its 
traces in DNS data. This work mostly uses machine learning, in various different ways, including clustering, 
linguistic analysis, and anomaly detection. (Some authors combine two or three of these.) 

The clustering approach, for example [Antonakakis et al, 2012; Thomas & Mohoisen, 2014], uses 
the fact that if more than one client in the network is infected by the same DGA malware using the same 
seed for domain generation, the infected clients will request IPs for the same DGA-generated set of 
domains at roughly the same time. This approach looks for sets of domains with similar features (for 
example syntactical similarity, or similarity of registration history) that are requested at similar times by the 
same set of clients. This approach has had some success, but it can only detect malware that has infected 
several different clients in the network. Our solution does not have this limitation. 

Another machine-learning approach is to identify clients that request many domains that have 
linguistic features unusual in human-generated domains; see e.g. [Mouchouz, 2013; Schiavoni 2014]. This 
works well for some malware, but is not a good approach for detecting malware families such as 
Suppobox [Geffner, 2013] or Matsnu [Skuratovich, 2015] which use the increasingly common ploy of 
generating domains based on dictionary words. In our evaluation, our system detected a Matsnu infection. 



Another machine-learning approach is to use anomaly detection to identify clients requesting an 
unusual set of domains: for example, a set with an unusual distribution of domain lengths [Mowbray & 
Hagen, 2014]. This however does not identify the malware family causing the anomaly. Identification of 
the malware is important, as it has implications for what actions should be taken. 

A general disadvantage of machine learning is that it can lack transparency. It may not be at all 
clear why a client has been identified as infected, and hence the reason for any false positives or false 
negatives. Our approach does not use machine learning. The rules that we use to identify infected clients 
are explicit, and are intended to be easy to understand, and also easy to update if necessary. 

[Krishnan et al, 2013] gives an intriguingly simple approach using sequential hypothesis testing. 
It looks for clients that request non-resolving domains for many DNS zones, and do not make many 
requests of non-resolving domains for zones that it has already seen.  This appears to give good results, 
however it does not identify which malware a client is infected with. It may also have problems identifying 
families such as Symmi [Bader, 2015], which generates domains that are all subdomains of ddns.net. 

2  Our Approach  
The basic idea of our system is to detect that a client (identified by its IP address) is infected by a particular 
blacklist-evading malware family by recognizing a pattern, specific to that family, in the domains that it 
requests. We write a SQL rule for each family that encodes the pattern, and run it on an enterprise’s DNS 
data. Our system only looks for malware families for which a rule has been written. However, if a new 
DGA-using family is discovered, it is fairly simple to design a new rule to detect it.  

2.1 Architecture Overview 
We begin by describing the architecture into which our solution fits. It is illustrated in Fig 1.  

 

Figure 1: Overall Architecture 



We capture packets from enterprise DNS servers, and copy information from them to a HP 
Vertica database. Requests for IP addresses of very popular domains such as google.com and 
facebook.com are ignored, as are requests for malformed domains (e.g. domains containing no dot.) 
The information that we can retrieve from the database includes timestamp, the time of a DNS packet; 
client, the IP address of the requesting client; domain, the domain requested; d0, the public suffix (for 
example the public suffix of example.ac.fr is ac.fr and the public suffix of 2.example.com is com); 
d1, the substring of the domain between the last two dots before the public suffix; l0 and l1, the lengths 
of d0 and d1; and nxdomain, which is true if and only if the domain is an NXDOMAIN.  

Every two hours, our server (called the BD4S server, where BD4S is short for Big Data for 
Security) runs a SQL query for each malware family on the last two hours’ data. The query returns a list of 
client IPs in the enterprise detected as having an infection from this family, and the algorithmically-
generated NXDOMAINs that they have requested. This is sent as an alert to the security operations center 
for the enterprise, and mitigating action can be taken. Depending on the malware detected, this might for 
example be an automated response to the employee using an infected machine with instructions on how 
to disinfect it, a quarantining of the machine, or further investigation of the machine by experts in the 
security operations center. The choice of a two-hour interval, rather than a different interval (or streaming 
detection), fits with the procedures commonly used by enterprise security operations teams. 

The infrastructure consisting of packet capture, database and application frontend was presented 
in [Horne, 2014], and has been used on HP’s own network and in trials on other enterprise networks. The 
additional system is presented for the first time in this paper. It is lightweight, consisting just of a compiler 
(about 600 lines of Python, excluding comments), and a scheduler. It is thus easy to integrate in an already 
working system. For a smaller organization, an alternative to using packet capture would be to populate a 
database from DNS logs. 

2.2  SQL queries: an example 
In this section we describe how we design SQL queries to detect DGA families.  

The DGA families for which we currently have SQL queries are listed below. The Microsoft 
Malware Encyclopedia [Microsoft, 2015] has entries for all the families for which a specific reference is not 
given. In one case (New-DGA-v1) the DGA has not yet been identified as far as we are aware as being 
caused by a known malware family, and so it might be benign. 

Bankpatch [Antonakakis et al., pp.21-22], Bedep, Conficker (we have a single rule that identifies 
Conficker-A or Conficker-B), DGA10 [Mowbray & Hagen, 2014], Dyre [Chiu & Villegas, 2015], 
Expiro, Matsnu [Skuratovich, 2015], New-DGA-V1 [Antonakakis et al., p.19], Necurs, Pitou, 
Pushdo, Pykspa, Ramdo, Runforestrun [Unmask Parasites, 2012a, 2012b; MalwareMustdie, 2012], 
Shiotob, SillyFDC. 

Our SQL queries do not consider individual domains in isolation: rather, they look at the set of 
NXDOMAINS queried by each client IP in a particular time interval, which allows for more accurate 
detection of infected client IPs. The query design is intended to be flexible. As a result, the queries contain 
some redundancy, but as will be shown in the evaluation section, they have reasonable performance. 

As an example, here is the SQL query used to detect the Pushdo malware family. Pushdo’s DGA 
generates domains consisting of a string of 9-12 alphabet characters followed by .kz, possibly also 
preceded by www., and vowels (including y) have higher probabilities of occurring in the string than 
consonants do. 
 
SELECT f.client, f.domain, f.timestamp   
FROM (  
   SELECT d.client, d.domain, d.timestamp, d.d0 
 COUNT(d.d0 IN ('com', 'info', 'net', 'in') OR NULL) OVER (PARTITION BY d.client  
 ORDER BY d.timestamp RANGE BETWEEN INTERVAL '1 hour' PRECEDING AND INTERVAL  
 '1 hour' FOLLOWING) AS number_non_kz,  
      COUNT(d.d0 = 'kz' OR NULL) OVER (PARTITION BY d.client ORDER BY  

d.timestamp RANGE BETWEEN INTERVAL '1 hour' PRECEDING AND INTERVAL '1 hour' 
FOLLOWING) AS number_kz,  

      COUNT(d.domain) OVER (PARTITION BY d.client ORDER BY d.timestamp  
RANGE BETWEEN INTERVAL '1 hour' PRECEDING AND INTERVAL '1 hour' FOLLOWING) 
AS number_requests  

    FROM ( 
        SELECT domain, client, MAX(timestamp) AS timestamp, d0 
        FROM hplDNSReplies 



        WHERE timestamp >= '2015-08-05 00:00:00'  
 AND timestamp <= '2015-08-05 23:59:59' 
            AND REGEXP_INSTR(request,  
  '^(www\.)?[a-z]{9,12}\.(com|in|info|kz|net)$') > 0  
            AND nxdomain  
            AND REGEXP_COUNT(d1, '[aeiouy]') / l1 > 0.33 
        GROUP BY client, domain, d0 
    ) d 
) f 
WHERE f.number_requests >= 20 AND f.number_non_kz < f.number_kz AND f.d0 = 'kz'; 
 

An informal description of this query is: 
1. Select all the NXDOMAINs requested in the timeframe that match the regex ^(www\.)?[a-

z]{9,12}\.(com|in|info|kz|net)$ and where d1 has more than 33% vowels. To remove 
duplicate domains, group by client and domain and set the timestamp for each (client, domain) 
pair to be the last timestamp for this pair. 

2. For each (client, domain) pair, count the number of selected NXDOMAINs ending .kz  and not 
ending .kz  that were requested by the client, whose timestamps are no more than one hour 
before or after the timestamp for the (client, domain) pair. If there were least 20 such domains in 
total, and more than half of them were .kz domains, return the client and domain. 

The check that more .kz domains are requested than domains with public suffix com, in, info and 
net is made in order to distinguish Pushdo domains from domains generated by Flashfake [Gostev, 2012].  

After some time spent constructing SQL queries like the one above, we decided that rather than 
designing them directly it would be easier to specify them in a higher-level language which could then be 
compiled into SQL. We have written a language for this purpose, which we outline in the next section. 

2.3 Linnea, a language for domain-wise predicates 
This section describes a simple language called Linnea, which we have written to make it easier to design 
SQL queries for DGA detection. A summary of how to compile Linnea to SQL is given in section 2.5. The 
following specifies the elements of the language. 

1. P_0, …, P_n defines the program, where each P_i is a predicate set. Starting with P_0, the 
entirety of the domain data is fed into P_0, which yields the remaining domains, which will be 
fed into P_1, and so forth until P_n, which will be the output of the program. 

2. {p_0,…,p_n} defines a predicate set; it is true if and only if all predicates p_0,…,p_n are true.  
3. For Booleans and numbers, we have the usual arithmetic and logical operators. 
4. a = b  is the string equality predicate. 
5. match(s,r) is true when the string s matches the regular expression r. 
6. count(s,r) counts the number of occurrences of the regular expression r in s. 
7. | g in h_0,…,h_n: p | counts how often the predicate p(g) holds for each g element of 

{h_0,…,h_n}. 
8. g in h_0,…,h_n  yields true if and only if g is element of {h_0,…,h_n}. 
9. [ a_0,…,a_n:T|p ] finds in the current set of domain data those domains, that are in the 

timeframe [timestamp-T;timestamp+T] and have the same properties as the current domain, 
with respect to the property names a_0,…,a_n. It then counts given those how many fulfil the 
predicate p. These expressions are not allowed in P_0 for performance reasons. 

10. Various variables for each domain can be accessed, e.g. domain, client, timestamp, 
nxdomain, d0, l1. 

Given these rules, we can define DGA-specific rules to detect infected clients easily. For example the rule 
for Matsnu [Skuratovich, 2015] is this: 

{ 
timestamp >= t0 - 2h, timestamp <= t0, 
nxdomain, 
match(domain, '^[a-z-]{11,23}\.com$') 



}, 
{ 
 [client:1h|true] >= 25, 
 [client:1h|count(d1, '-') = 1] +  

[client:1h|count(d1, '-') = 2] >= 20, 
[client:1h|count(d1, '-') = 1] >= 9, 
[client:1h|count(d1, '-') = 2] >= 9 

} 

Which reads as: 

1. Select all NXDOMAINS that match a specific regex. 
2. Given this set, select the requests by clients that request at least 25 domains, at least 20 of which 

contain one or two hyphens, at least 9 with exactly one and at least 9 with exactly two. 
Below are some of the Matsnu domains detected on 11th August 2015. They were all requested by the 
same client.  It would be hard to tell for example that birthday-baby.com was algorithmically-
generated, without the context of the other domains the client requested around the same time. Our rule 
detected the Matsnu domain professorloose.com although it does not have a hyphen. 

birthday-baby.com, professorloose.com, term-cow-record.com, blank-operate.com, 
quantity-apply.com, title-smart-media.com, blindchart-pair.com, reading-
persuade.com, reading-sort.com tongue-warm-funeral.com, blacksource-method.com 

Another example is the rule for New-DGA-v1 [Antonakakis et al, 2012]: 

{ 
    timestamp >= t0 - 2h, timestamp <= t0, 
    nxdomain, 
    match(domain, '^[a-f0-9]{8}\.(com|info|net)$') 
}, 
{ 
    [client:1h| |suffix in 'com','info','net': 
        [client,d1:1h|d0=suffix]>=1| >= 2] >= 10 
} 

1. Select all NXDOMAINS that match a specific regex. 
2. From this set, select the requests by clients that request at least 10 different domains that each 

have a companion domain in the set, consisting of the same string followed by a different suffix, 
requested by the same client: e.g. abcabcde.com, abcabcde.net are companion domains. 

2.4  Building Linnea statements from sample data 
In some cases the domain-generation code for a malware family has been reverse-engineered, but this is a 
highly-skilled task. It is more usual to design a SQL rule based on patterns observed by eye or with some 
analysis tool, in sets of domains requested by clients infected with a particular DGA-using malware family.  

Patterns may be for example, about distributions of l1 values or d0 values, a restricted character 
set for d1, limits on how often particular characters appear, or the batch size. These can easily be detected 
via regular expressions, or counts of matches to them. In our Linnea rules, regular expressions usually 
appear in the first predicate layer, P_0. Then there are properties specific to a batch of requests, for 
instance how many different domains matching the regular expression are requested within a timeframe, 
or how many of these contain a hyphen. In Linnea, predicates to detect these properties are in the 
predicate layers after P_0, for performance reasons.  

The Linnea rules that we have written so far all use the value of 1 hour for the timeframe 
parameter T used in (9). However we could use a smaller value for malware families that request many 
algorithmically-generated domains in a short time interval. 



2.5  Constructing SQL queries from Linnea  
A compiler for Linnea must parse a Linnea file, convert it into an abstract syntax tree, traverse it, and build 
a SQL query from inner to outer query. 

Most of the elements of Linnea can be converted into SQL directly. These elements are the usual 
arithmetic (rule 3), the in syntax (8), the regex functions (5, 6) and the domain variables (10). For double 
bar notation (7), the compiler just repeats the predicate for each item, replacing the item placeholder with 
the item, converting the Boolean to a number {0, 1}, and concatenating them with the addition operator. 
For predicate sets (2), the compiler concatenates all predicates with ‘AND’, and it spawns a SQL sub-query 
for each of the elements in a program (1).  

Compiling the bracket notation (9) is a bit more complicated. The whole expression is replaced 
by a placeholder name. A new sub-query is spawned in which a COUNT(…) OVER(…) analytic function 
with an alias of the placeholder name is inserted in the SELECT part of the sub-query. The compiler 
appends OR NULL to the predicate in the COUNT expression, because COUNT counts non-NULL values. 
The analytic function is partitioned by the parameters a0, a1…, an, and is restricted to the timeframe 
from timestamp-T to timestamp+T inclusive. Then the compiler returns to the super-query. 

2.6  Linnea Compiler Implementation and Query Examples 
A working, but not thoroughly tested implementation of a Linnea compiler can be found at 
https://github.com/EyeOfPython/Linnea. Instructions on running the script are given in the readme file. 
The implementation uses the pyparsing module for the syntax analysis. It offers the ability to directly 
execute the compiled queries on a SQL database. For this to work, the pytoml and pyodbc packages have 
to be present. Examples for some DGAs are in the examples/ folder. At the time of writing they include the 
16 DGAs listed in Section 2.2. 

3 Evaluation and Further Work 
We evaluated our system for performance and accuracy, using a day’s worth of DNS data collected from a 
large enterprise network on 11 August 2015. There were 18.2 million NXDOMAIN entries in the database 
for that day, recording DNS requests for 308,176 distinct non-resolving domain names by 68,757 clients in 
the enterprise, where the clients were identified by their IP addresses. (These figures exclude NXDOMAIN 
requests from IP addresses known to be of servers rather than end clients, for example web servers; we 
did not count these servers as clients). We ran our queries on a HP Vertica database server with standard 
configuration, over a standard cluster of HP DL30 servers. HP Vertica is a database with a columnar 
architecture designed for speed and scalability [Hewlett-Packard Development Company, 2014]. 

We measured the execution time for each of our SQL queries for each 2-hour timeslot during the 
day. The longest query execution time was 2.144 seconds, the shortest 0.949 seconds. The average total 
time for running all our queries consecutively was 19.3 seconds. We only need to run the queries once 
every two hours, so if the current queries are representative, we could add queries for thousands more 
DGAs without the server becoming busy. This performance means that when new Linnea rules are being 
developed, the results of experimental changes to a rule can be displayed within a few seconds. 

The data was independently examined (by eye, with the assistance of some simple analytic tools) 
to identify clients requesting domains from the 16 DGA families for which we currently have Linnea rules. 
These results were compared with the results from the SQL queries. Strikingly, 10 out of the 16 DGA 
families were present in the day’s data. These were Bedep, Conficker, DGA10, Expiro, Matsnu, New-DGA-
V1, Necurs, Pitou, Pushdo and SillyFDC. All 10 were detected by our SQL queries. At the level of 
identification of individual clients there were two false negatives, one false positive, and 72 clients 
correctly identified as requesting a batch of domains from one of these families.  

The independent examination also found some clients, not detected by our SQL rules, which 
requested a few domains from one of these families, but not a full batch. These clients did not successfully 



connect to a DGA command and control domain on 11 August. They may have been disconnected and/or 
disinfected before the operation of the DGA could be completed. We did not count them as false negatives. 

As a next step for this work, we will run our system on more enterprise data and compare its 
results with using a machine-learning approach on the same data. Other obvious steps are to design 
Linnea rules for more DGAs, and to check rules for DGAs that are detected in the new data but were not 
present in the one-day data set. Both of the false-negative clients in our evaluation requested 9 or more 
sinkholed DGA domains, so we could also try to improve our approach by treating domains that resolve to 
known sinkhole IP addresses as though they were NXDOMAINs.  
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